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Most of Dr. Dilcher’s research can be described as “classical”, dealing 
with mathematical objects that have often been of interest for decades. 
However, new methods make it worthwhile to take a fresh look at old 
objects, usually involving computer experimentation. The resulting theo-
retical investigations often lead to new and sometimes unexpected re-
sults.

Number Theory: Dr. Dilcher’s research interests include prime numbers,
factors of very large integers of special forms, and special sequences of 
numbers and polynomials. Some results have applications in combina-
torics, such as lattice paths or binary partitions (representing integers 
as sums of powers of 2) along with generalizations. However, the main 
objective of this research is to try and shed some light on integers and 
sequences that have interesting and often mysterious properties.
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number theory is: How are the roots of a polynomial or of a sequence of
polynomials distributed? This has applications in various areas, such as
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ics, and more recently probabi-
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research.
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where the constant in the error term depends only on the choice of r and �. The

polynomials qj can be computed explicitly.

Writing z = zk,n and w = wk for simplicity, the first few terms of this series are
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Figure 1.13: The zeros of the partial sums pn[exp](z) for n = 1, . . . , 80 in the upper
half plane, shown with the approximations given by the first four terms of equation
(1.4.1) using w = w
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in orange and w = w
2

in green, where w
1

⇡ −1.35481+1.99147i
is the smallest zero of erfc in the upper half-plane and w

2

⇡ −2.17704 + 2.69115i is
the next smallest. Compare with Figure 1.10.

Remark 1.11. In [30] the authors claim that if w = u+ iv is any zero of erfc(w/
p
2)

then pn[exp] has a zero arbitrarily close to the parabola
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The expansion in (1.4.1) indicates that the constant on the y term is not correct. In

fact the correct parabola is evidently
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The methods in this thesis, and in particular in Chapter 5, are based on the ones

Kriecherbauer, Kuijlaars, Mclaughlin, and Miller used to obtain the above results.

By generalizing their function Fn(z) we are able to apply their methods to the study

of partial sums of power series of a wide class of entire functions.


